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An exact solution is obtained for the problem of the washing Of a porous half- 
space in a diffusion-free arrangement. An investigation is made of the char- 
acteristic features of mass transfer during the filtration of an active liquid. 

The interaction of an active solution with a porous medium plays an important part in 
various problems of hydrotechnology (filtration in saline soils) and geotechnology (the re- 
covery of minerals by extracting their solutions) [1-3]. The increase of the porosity occur- 
ring during such interactions is physically equivalent to the removal of the dissolved material, 
and in general, this can significantly influence the structure of the solution of the corres- 
ponding boundary-value problem. 

The characteristic features of mass transfer during the filtration of a solution can be 
studied through the example of the leaching of a half-space with a constant flow rate in a 
diffusion-free arrangement. In this case, the mass transfer in the active zone (0 < N < N I, 
x < ut/m I) can be described by the following equations 

0 (mc + N) Oc 
+ u  = o ,  ( I )  

ot Ox 

pm+ N=pml+N 1 = const, ON = [3 (c - -  Co). (2) 
Ot 

The initial and boundary conditions have the form: 

N(x, O ) :  N,, c(x, O ) :  Co, O~x<oo; c(O, t )=  O, t>O, ( 3 )  

u : cons t ,  Co = const .  

Similar problems have been considered for limiting situations in [3, 4]. The exact solu- 
tion of the problem (1)-(3) is sought, and it is shown that under the corresponding conditions 
this problem gives rise to the solutions obtained in [3, 4]. It is noted first that as a re- 
sult of the condition (2), 

Ox ~ Ot 

When this is taken into account, Eq. (i) can be written in the form 

a {re(c--p) uP am}----O, 
Ot ~ Ox 

giving rise to the first integral 

m (c-- p) up Om - -  = ~ ( x ~ .  (4) 
Ox 
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The function ~(x) at each point x represents the arrival there of the leading edge of the 
front at the moment of time t(x) = mlx/u. 

From the condition that the porosity is constant (m = m I) at the leading edge of the 
front 

am u am 

Ot ml Ox 
and from the relationship arising from Eq. (2) 

- o  (5)  

0111, 
--  (c --Co) (6 )  

Ot 9 
it is found that 

(x) = m l  (co--p) =cons t .  

By c o m b i n i n g  Eqs .  ( 4 ) ,  ( 6 )  and (7 )  t h e  f o l l o w i n g  e q u a t i o n  i s  o b t a i n e d :  

( 7 )  

9m Orn up Om 
+ = (Co -- p) (m -- rnl), ( 8 ) 

at ~ ox 

which describes the variation in porosity in the active zone. The general solution of this 
equation has the form C 2 = F(CI) , where 

Cl = (:n--ml).exp } ( O - c ~  Ci= ut--  mlx + up(m--m 0 ( 9 )  
up ~ (p - -  co) 

are integrals of the characteristic system 

~dt ~dx dm 
9m up (~ - -  p) (m - -  ml) 

The c h a r a c t e r i s t i c s  a r e  d e f i n e d  by t h e  r e l a t i o n s h i p  d x / d t  = u/m.  T h e i r  s l o p e  (u /m)  i s  e q u a l  
t o  t h e  r a t e  o f  a d v a n c e  o f  t h e  s o l u t i o n .  At t h e  l e a d i n g  edge  o f  t h e  a c t i v e  f r o n t  zone  m = mz, 
x = x l ( t )  = u t / m l .  The p r o c e s s  b e i n g  i n v e s t i g a t e d  can  be s e p a r a t e d  i n t o  two s t a g e s  [ 3 ] .  The 
f i r s t  s t a g e  e x t e n d s  u n t i l  N(0,  t )  > 0 a t  t h e  i n l e t .  The d u r a t i o n  T o f  t h i s  s t a g e  and t h e  
r e l a t i o n s h i p  m(0,  t )  f o r  0 ! t ! T a r e  e a s i l y  found  f rom Eqs .  (2 )  and ( 3 ) :  

Here, 

T = N 1 / ( ~ o ) ,  . z  (0, t) = m ,  + ~--- cot. 
9 

C=(O, t ) =  u9a 61(0, t), F ( C ) =  ugZ C. (10) 
Do (o --Co) ,e, co (~ - -co)  

Thus, in the first stage (0 ! t ! T, 0 ! x ! ut/mz) the solution of Eq. (8) taking gqs. (9) 
and (i0) into account has the form 

ut--mlx + up(m--rex) = upZ(m__ma) expe~P__ColXal ~ (11 )  
1~ (p--Co) I~co (o -- Co) up 

The corresponding concentration distribution is found from (6): 

9co[1--exp ~ ( c ~  ] 
up 

c = (12)  
[3 (Co -- o) x 

9 - -  co exp 
up 

The second stage of the process begins at the moment t = T when the reserve N of soluble 
material at the entry is exhausted: N(0, T) = 0. At this moment the trailing edge of the front 
x = xi(t ) of the active zone is formed and begins to move. When t > T the zone xe(0, xi) is 

721 



P, 

I 

2~ 

T 

Fig. i. Form of the active zone of mass trans- 
fer: i) leading edge of the front (x = ut/mi); 
2) line (characteristic) of contact of the 
first and second zones (x = xs(t)); 3) limiting 
slope of the characteristic (x = ut/mf); 4) trail- 
ing edge of the front (x2 = uc0/(mxc0 + Ni)). 

completely depleted. By analyzing the condition arising from Eq. (i) for the balance of the 
dissolved material on this front [5] it is found that 

[mc + N] :~2= u [c]. (13) 

Here the square brackets denote a step change in the quantities contained within them. It 
should be noted that the parameters m and N are continuous at x = x 2, since otherwise as a 
result of Eq. (2) the front will be stationary over a finite length of time. Hence, instead 
of Eq. (13) it is possible to write 

m2[c]22=u[c], m~=ml+ N___i. ( 1 4 )  
P 

If it is assumed here that [c] ~ 0, it is found that x2 = u/mf, i.e., the trailing edge of 
the front is conveyed on a characteristic, which contradicts relationship (Ii) for m = ml, 
x = ut/ml. Consequently, this assumption is invalid, c(xf(t) , t) = 0 and Eq. (13) does not 
determine xf. The velocity of the trailing edge of the front can be found from the following 
reasoning. If we have N(xf(t) , t) = 0, then 

dN O N x ~ +  ON = 0 .  ( 15 )  
= a x  " a-7-  

On the basis of Eq. (2) it is possible to write 

t 

N (x, t) = N1 + [ f~ (c--  co) e,, 
xml/u 

where xmi/u is the moment at which the leading edge of the front passes the point x. 

1 0 ( ~ + N )  
By differentiating with respect to x and substituting the quantity 

u at 

from Eq. (1) in place of 8c/3x in the expression which is obtained, at the moment of time when 
the trailing edge of the front passes the point x it is found that 

ON = ~com______L + ~N___!_~. 

Ox u u 

Since ON (x~(t), t)=--~c0: as a result of E. (2), it is found from Eq. (15) that 
Ot 

�9 ~ o  . ( 1 6 )  
x2 = miCo + NI 
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For the subsequent discussion it is important to stress that since N I = P(ma-m I) and p > co, 
then x2 < u/ma. In this connection, in the plane (t, x) a zone is formed (angle BTC) for 
t > T into which the solution (11) obviously does not extend (see Fig. i). The structure 
of the solution of the problem in the second stage is determined by the interaction of two 
waves: the first of them is generated by the entry (x = 0) and is described by relationships 
(ii) and (12), while the second is generated by the trailing edge of the front. The function 
C a = F(C I) corresponding to it is found by substituting x = x2(t), m = m 2 into the character- 
istic integrals (9) and eliminating the time t from the expressions which are obtained. As 
a result of this it will be found that 

ut -- rnlx + up (m -- rex) uNlp [ ln __m - -  rn, -I- 1 4 [~ (p - -  e~ x ] 
13(p--Co) = :~co(p--Co) L tn~--rn~ up ' (17 )  

N~ - -  p (m - -  rn 0 
c = co �9 ( 1 8 )  

N 1 - -  c 0 ( m  - - -  m l )  

Since from physical considerations the parameters m and N are continuous, as noted 
earlier, the relationships (ii), (12), (17) and (18) completely describe the solution of the 
problem in the second stage. In particular, by eliminating m from Eqs. (Ii) and (17) a re- 
lationship is obtained for determining the motion x = x3(t) of the point of contact of the 
two waves: 

ut~m~x3-~ mtx3[~--(put _-- ~ uNlp ~ [ tnxx 3 --  at • 
1-- ~ exp - -  co) x~ ~, co (p -- c~ tn [ 1 - -  ----P exp [~ (p - -  e~ x3 

co up co up 

[~(P--Co) _]  + l+[3(P- -C~ 
X up (m2 - -  m 0 up 

( t9 )  

After this, the step change in the concentration at the point of contact is determined from 
Eqs. (ii), (12) and (18): 

[c] = {c~l~p (p - -  co) 2 (ut -- mlx~) exp 

+ cJC~up (p -- co) f 

• 

13 (p --Co) x3 + 
up 

co--pexp ~(P--C~ ]}{ [ c~176  ] u p  

{ N~uP f C~ -- p exp ~ (p -- c~ x3 ] + c~(P -- C~ ( ut -- m~x3) } } - ' ' u p  

• ( z o )  

The exact solution which has been obtained reduces to the solution of N. N. Verigin [3] under 
the conditions c0/p << 1 (small solubility), xl(t ) + ~ (first stage), x~(t) § ~ (second stage). 
The last two conditions mean that the characteristic dimensions of the zone in which the solu- 
tion of [3] is observed are much smaller than the dimensions of the active zone in the first 
stage and the size of the zone occupied by the wave from the trailing edge of the front in 
the second stage. 

The solution given in [4] is obtained from Eqs. (17)-(20) for values of c0/0 , [c](x3)/c 0, 
and (m 2 -- ml)/m I which are much smaller than unity. Physically this corresponds to a process 
of washing out a small quantity of a salt of low solubility over a large time of observation. 
In this case, Eq. (18) reduces to the well known relationship of Zel'dovich [6]. 

NOTATION 

x, coordinate; t, time; m, porosity; c, mass of dissolved material per unit volume of 
solution; N, mass of soluble material per unit volume of the porous medium as a whole; u, 
filtration velocity; p, density of the soluble material; c0, equilibrium concentration; 6, 
dissolution rate constant; ~(x), first integral; CI, C2, integrals of characteristic system; 
ml, NI, porosity and mass of soluble material per unit volume of medium as a whole at the 
initial moment of time t = 0; x2, coordinate giving position of the trailing edge of the front; 
x2, velocity of the trailing edge of the front; xa, point of contact of the two waves of the 
solution. 
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TIME DEPENDENCE OF THE HEAT-TRANSFER COEFFICIENT 

BETWEEN COMPONENTS OF A COMPOSITE DURING HEAT 

TRANSFER 

I. V. Goncharov, V. L. Mikov, 
and V. P. Sobolev 

UDC 536.2.01 

The effect of the thermophysical and geometrical characteristics of the com- 
ponents of a composite on the dynamic behavior and asymptotic value of the 
coefficient of heat transfer between the layers is studied. 

A multitemperature approach [i-3] based onaveraging of the temperature fields of each 
component within an elementary microvolume is beingemployed increasingly in the calculation 
of the thermal state of heterogeneous media. In the case of layered and reinforced media this 
makes it possible to reduce the dimension of the initial heat equations, thus greatly facili- 
tating the solution of the problem. The resulting system of differential equations (the order 
of the system is equal to the number of components) is closed by introducing a relation between 
the density of the thermal flux between the components and their average temperatures. In [i] 
such a relation was obtained from phenomenological linear relations between the thermodynamic 
forces and fluxes: 

q~i=~ (t~--tl). (1) 

It is understood that = is an effective characteristic of the thermophysical and geometric 
parameters of the structure of the composite. The explicit form for = for a layered composite 
was obtained in [2] and [3], respectively, as 

~ = 2 V 3  11 l~112 , ~s 3XlX~ ( 2 )  

The heat-transfer coefficient a is an integrated characteristic of the rate of heat transfer 
between the components. The integrated heat-transfer characteristics are generally not con- 
stants. It is known [4], e.g., that the effective thermal-conductivity coefficient, which is 
also an integrated characteristic, depends on time. By analogy we can assume that a will be 
a function of time in layered (reinforced) media. 

We examine this by considering the model problem of propagation of heat in a two-layer 
composite with a regular structure (a representative cross section of the material is shown 
in Fig. i) under boundary conditions of the second kind. On the assumption that the thermo- 
physical characteristics of the components do not depend on the temperature, we can write 
the following for an isolated elementary cross section: 
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